Im. J. Heat Mass Transfer. Vol. 19, pp. 513-521. Pergamon Press 1976. Printed in Great Britain

APPROXIMATE ANALYSIS OF HEAT TRANSFER IN
TRANSPIRED BOUNDARY LAYERS WITH EFFECTS OF
PRANDTL NUMBER

TSE-FOU ZIEN*
Naval Ordnance Laboratory, Silver Spring, MD 20910, US.A.t

(Received 28 December 1973 and in revised form 11 February 1975)

Abstract—A simple procedure is developed for approximate calculations of wall heat-transfer rates in
transpired boundary layers. Applications of this procedure are illustrated by various examples of in-
compressible, laminar flows in the limits of large and small Prandtl numbers. A distinguished limit of
large Prandtl number and small mass-transfer rate is easily identified, and some limiting solutions are
presented for the porous-plate configuration. Calculations for the cases with small Prandtl numbers
explicitly demonstrate the usefulness of the method in studying transient heat-conduction problems. The
remarkable combination of accuracy and simplicity represents the principal merit of the method.

NOMENCLATURE o1,  atemperature profile-parameter,
a, radius of a circular cylinder; 1 1 “nr
C;, skin-friction coefficient, 7,,/4pu2 ; L g(ﬂr)d'IT—L dnr JO glhr)dny
C,,  specific heat of gas at constant pressure; "
erfc, complementary error function; + J nrgnr)dnr;
F, 1Cy; 0
g, p;,Oﬁl; for dimensionless temperature, B, a temperature profile-parameter,
® . 1
Tw; Tao ’ \[ g(’?r) d"]r,
gitn), 1-n; 0
galn), 1=2n+2n>—n*; 7, a temperature profile-parameter,
K-P, Karman-Pohlhausen; 1
k, heat conductivity of the gas; J nrg(nr)dnr;
N.,  Nusselt number, §,x/(T— To)k; 0
Np,  Nusselt number, 2a¢u/(T, — To)k; d, thickness of velocity boundary layer;
Pr,  Prandtl number, uCp/k; dr,  thickness of thermal boundary layer;
¢, heat flux in the direction of y; g, basic mass-transfer parameter, v,/ ;
Rp, Reynolds number based on the diameter, nr,  similarity variable, y/ér;
2ueafv;
R.,  Reynolds number based on x, ux/v; . . T-T,
R;,  Reynolds number based on 4, us6/v; 6, dimensionless temperature, T.—T,
Ry, Reynolds number based on dr, u,87/v; o
T,T abzolut  temperature: T 7/ K, ther{nzz/gl diffusivity, k/(pC,);
(u, v), velocity components corresponding to (x, y); A, APr=2;
(%, 0¥t 0t A Pris;
(x,y), orthogonal coordinate system with origin at 4 SX/?/;
the leading edge or forward stagnation point, % R
x along the surface. A, eRrs
U, dynamic viscosity;
Greek symbols v, kinematic viscosity;
(o B,7), velocity profile-parameters defined in [1]; o, density;
d, a temperature profile-parameter, T, shear stress;
t1 1 o, angle measured from forward stagnation
JO nrg(nr)dnrHL nrg(nr)dnr point.
1 *nT
—L dﬂ‘rJO nrg(nr)dnr; Subscripts

00, condition far upstream;

P . . . .
Chief, Fluid Mechanics Group, Applied Aerodynamics e edge of boundary layer;

Division. ..
1 Presently, Naval Surface Weapons Center, White Oak, w, wall condition;
Silver Spring, MD 20910, U.S.A. 0, initial condition.
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1. INTRODUCTION

A SIMPLE, approximate method for calculating the
skin friction on porous surfaces has recently been de-
scribed by Zien [1, 2]. It is based on an idea, due
originally to Volkov, [3], for refining the classical
Karman-Pohlhausen (K-P) momentum integral tech-
nique in the boundary-layer theory, and is basically a
one-parameter type of integral approach.

The chief merits of this analytical method, as
illustrated in [ 1, 2], lie in the remarkable combination
of simplicity and accuracy. The relative insensitivity of
the results to the choice of velocity profiles is particu-
larly noteworthy. These encouraging findings are in-
dicative of the pbtential of the method for development
into a useful tool for practical calculations of boundary-
layer flows of a more complex nature. Further ex-
ploitation and extension of this new method appear
warranted.

The present paper contains the development of a
procedure for approximate calculations of wall heat-
transfer in a transpired boundary layer. The procedure
is based on a further modification and extension of
Volkov’s 3] original idea. Thus, the heat transfer on an
aerodynamic surface is calculated by considering the
energy balance across the entire, attendant (thermal)
boundary layer at a local flow station. A second
integration of the energy equation in the direction
normal to the surface is then performed to provide an
ordinary differential equation for the determination of
the basic profile-parameter. To be sure, the idea of
using a double-integration scheme had appeared
earlier in Whitehead’s [4] investigation of momentum
boundary layers. However, the determination of skin
friction in [4] was based on the local slope of the
assumed velocity profile, as in the original K-P
procedure.

For easy demonstration of the method, only simple,
yet basic, flows are considered in this paper. Thus,
applications are made to two-dimensional, incom-
pressible, laminar boundary layers of a single-
component fluid. Results are presented here only for
limiting cases of large or small Prandtl numbers where
certain simplifying approximations can be effectively
exploited to further facilitate the exhibition of the
central ideas of the method. Detailed results for
Pr = O(l) pertaining to the semi-infinite flat plate
with uniform surface mass flux are available in Zien
[5]. The frictional heating is neglected in the energy
equation throughout the calculations, and this approxi-
mation is generally valid for incompressible boundary
layers where the Eckert number is usually small. An
exact and comprehensive analysis of heat transfer in a
class of self-similar transpired boundary layers, in-
cluding the effects of frictional heating, can be found
in Gersten and Korner [6].

The method is first applied to the case of transpired
boundary layers with large Prandtl numbers. A dis-
tinguished limit of large Prandt! number and small
mass-transfer rate is readily apparent in the present
integral formulation. Some examples of this limiting
flow are studied. The procedure is then used to study

a class of low Prandtl number heat-transfer problems,
and the usefulness of the present method in providing
approximate solutions to general transient heat-
conduction problems becomes evident in the process.
It is noted here that all the calculations presented
in this paper involve, at most, the numerical integration
of a single, first-order ordinary differential equation.
In many cases solutions are obtained in explicit,
analytical forms. The primary purpose of the paper is
not to present solutions to any new problems. Rather,
it is to show how simply some old solutions can be
reproduced with good accuracy by the present method.

2. GENERAL FORMULATION

2.1. Equations and boundary conditions

In terms of the nondimensional velocity (u*, v*) and
temperature, 6, the basic differential equations and
boundary conditions for an incompressible, constant-
property, laminar boundary layer over an isothermal
porous surface are:

ou*  Jv¥
—+—=—=0, (1a)
ax  dy
O O T B )
ox Gy Uy Oy 0x
p B L0
Ox 0y uye Proy?’
aty=0:
u*=0 (2a)
=1 (2b)
v¥=¢ (2¢)
asy - oo:
u* — 1 (2d)
G- 0. (2e)

In the usual practice of integral methods, the asymp-
totic conditions are specified at the edges of the
boundary layer, § and dr, for u* and 0, respectively.
Some initial conditions on u* and 6 are generally re-
quired at x = 0 to complete the formulation. These
initial conditions are replaced by conditions on initial
boundary-layer thicknesses, §(0) and 87(0), in the
present integral formulation.

The skin-friction coefficient, C,, and the Nusselt
number, N,, are related to w* and 6 through the
following expressions:

. v Ju*
2C, = w (3a)
c0
and Ne= —x %y, (3b)

2.2. Present method of solution

Since the momentum equation is decoupled from the
energy equation, the solution of u* can proceed in-
dependently of the temperature field. In order to
present a self-consistent development of the calculation
procedure, we shall make use of the approximate
solutions of u* by a similar calculation scheme as
reported by Zien [1, 2] for the examples to be dis-
cussed below.
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We now proceed directly to solve the energy
equation. The first integration of (1¢) gives

I
— J u*@dy+e(0-1)
Ox 0

J |” Kk (00 00
-0 *dy=—| ——— 4
0x Lu y Ug (6y dy w) @)

where the continuity equation has been used to
eliminate v* in favor of u*.

Equation (4) is taken as an expression for the wall
heat flux by letting the integration cover the entire
thermal boundary layer. Thus, using (3b), we have

N, d [ .
R P dx u*fdy—e. (5)

Equation (5) is a nondimensional version of the
energy balance across the thermal boundary layer at
the station x. Therefore, the surface heat transfer is
determined from an integral expression involving the
assumed profiles for u* and 6. Of course, this repre-
sentation would be exactly the same as the one using
the derivative of 8 at the wall if the profiles used for
u* and 6 were the exact solutions of the probiem
under consideration.

The basic parameter of the thermal boundary layer,
dr, is to be determined by the following differential
equation which results from a second integration of the
original energy equation. Thus, effecting another
integration of (4), we arrive at

ot o or o (v
J dy—J u*0dy+j ( ——j u*dy>9dy
4] ax 0 0 ax [}

d ot
= 5Td_,[ wody—=. (6)

X Jo Uy

St_

In deriving (6) use has been made of the wall heat-flux
expression, (5).
We assume the following simple form for 0:

glnr) = Z ki, k; = const. )

The choice of the profiles is obviously crude in the
sense that they presume similarity for general flows to
be considered below. However, they are to be chosen
such that the essential boundary conditions, (2b) and
(2¢), are observed.

Equation (6) reduces to a first-order, nonlinear,
ordinary differential equation for ér, once a form for
0,such as (7), is introduced. With 87 solved, the Stanton
number, S, follows readily from (5) through an
algebraic process.

3. APPLICATION TO CASES OF LARGE Pr

3.1. General remarks

The existing literature on boundary-layer flows with
large Prandtl numbers is voluminous. Qur purpose
here is merely to describe the application of the present
simple method to this class of flows. Hence, only the
references pertinent to the present development and
results will be mentioned.

For large Prandtl numbers, the simplified repre-
sentation of the velocity in the thermal boundary layer
is

U~-—y. (8)

This approximation was introduced and discussed by
Fage and Falkner [7], Lighthill [8], Morgan and
Warner [9], among others, and is convenient for
systematic developments. Subsequent extensions and
improvements of this simplifying approximation can
be found, for example, in Curle [10], and more
recently, Chao [11]. This simple expression will be
exploited in the present formulation. The examples to
be presented here are porous-plate boundary layers for
which the skin friction, t,,, has been calculated earlier
by Zien [1, 2]. A self-consistent development of the
procedure is thus readily accessible. The results to be
presented and discussed in the following are all based
on the approximate solutions of 1,, pertaining to the
linear velocity profile used in [1]. However, two
temperature profiles, g; and gs, are used in the calcu-
lation to test the sensitivity of results to the temperature
profiless. We note here that the velocity profile-
parameters take the values (a, 8, 7)=(1/8, 1/2, 1/6) in
the ensuing calculations (see [1]), and the temperature
profile-parameters, (&, fi, 7) for g, and g, are (1/8, 1/2,
1/6) and (1/28, 3/10, 1/15), respectively.

3.2. Porous plate: similarity case
The basic equations are (5) and (6). From (8) we have

=3CrRenr = FRyyp 9

where Ry = u,,dr/v. For this particular flow, the result
of F as reported by Zien [1], i.e.

1/2 v
F= R'”Z( /ﬂ) <§—A>, (10a)
will be used. Also, A is related to 4 through
iea(top) 10b
= (E_ﬂ ) (10b)

Substitution of (9) into (6) leads readily to

dRr

+ BeRy. (11)

dR

For the case of similarity blowing (or suction),
&Ry = const., and (11) is easily integrated to give the
following solution:

o)
)

Ay

(12)

where A, = eRy.
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The heat transfer is obtained from (5), once Ry is
found. The result is

e
JRy 2\ \pr

23 /o -1/6 /., us
+Alﬂ> (5—/3/I> (é-z) —z]. (13)

Equations (12), (13) and (10b) constitute the solution
for N./R}? as functions of I and Pr.

It is interesting to note the behavior of the present
approximate solutions in the limit of Pr— o0 and
Z = O(1)for suction and blowing separately. Following
limiting solutions are easily deduced from (12) and
(13):

- 11 . -
i<0:ll~—ﬁﬁ and W~IMPV; (14)
~\z |2
25@"“)
I1>0:0, ~ 2|2 and
i
2

N, e

For the special case of 4 = 0, the asymptotic limits
for N./R1? as Pr — oo are 0.367 Pr'/® and 0.338 Pr'/®
for =g, and g4, respectively. These approximate
limits are to be compared with the exact limit of
0.339 Pr'/3 (see, for example, [12]).

As Pr - oo, the heat-transfer rate predicted here
approaches the correct asymptote (see Gersten and
Korner [6]) independent of profiles for the case of
suction. For blowing, the present solutions show a
strong profile-dependent behavior. Note that the
quantity in the parenthesis of (15) is negative for both
profiles considered here. The implications of the above
observations are thus clear. As Pr increases, the present
solutions are uniformly good for suction, but predict
too rapid a decay in the heat-transfer rate for blowing,
especially when 1is large.

Some typical results are illustrated in Figs. 1-4 and
compared with the available exact solutions due to
Stewart and Prober [13] and Thompson [14] when-
ever appropriate.

Figure 1 shows the results for Pr= 1 for which an
exact integral, 6 = 1 —u*, holds. Exact solutions for
heat transfer are thus available from the exact skin-
friction results of Emmons and Leigh [15], or directly
from [13], for comparison. It is remarkable that the
present procedure, suitable for large Prandtl numbers,
yields very accurate results of heat transfer for Pr= 1.
Of course, the finding that the validity of a calculation
procedure designed for large Prandtl numbers actually
extends into regions of moderate Prandtl numbers is
not totally unexpected, see [8]. We also note the in-
sensitivity of the present results to the profiles used in
the calculations.

Figures 2-4 show the heat-transfer results are
functions of the Prandtl number at three values of
£:001//2, 0.1//2 and —./2/10, for which exact

a4
12
o8=g (n,)
o Q +8=g,(n,)
® = Exact [13]
o8- n
x|l x
g g
& L
o
04
?
Y
T \\
o L ] | | | | L 2~

-08 -06 -04 -02 0 0z 04 08

%

-2 -0

FiG. 1. Porous plate, similarity case, Pr=1 (present
method, u = yrw/p).
10
F 08=g,iny
I giinr - 0O
- +6 =g4 (97) NVrn

== Exact (numerical} {14]

T

- — +
Lo’
7~
|O-|I L |1||n||0 4 Axlunlioz L lIJ_Lili)z
Pr
Fi1G. 2. Porous plate, similarity blowing (present method,
U= yru/p).

v ol
A=

T T 1T

-1

$|L§ 'o o 08=g,(n)

L +6=g,(n,) o

B = Exact (numerical) [14] *

lo_al ] L IJ_LHIIO i Ll 14*02
Pr
FiG. 3. Porous plate, similarity blowing (present method,
U= ytu/p).

solutions are available for comparison. These results
clearly confirm our aforementioned predictions based
on the behavior of the present solutions in the limit of
Pr — . However, it should be remarked here that as
Pr — oo, the results pertaining to blowing, though
quantitatively inaccurate, are still qualitatively correct.
It is possible that the thermal boundary layer is blown
off the surface while the momentum boundary layer
still remains attached.



Heat transfer in transpired boundary layers 517
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FiG. 4. Porous plate, similarity suction (present method,
U= yTu/p).

+
5
x| 107 -
EM C 08 =gn,)
L +8 3g,(n;)
B == Exact (numerical)(14]
T—
102 A
I ) 102
Pr

FiG. 5. Porous plate, similarity blowing (usual K-P method,
U= yTw/{).

The same approach and profiles are then employed
in the original K-P procedure for this problem, using
7., obtained from the original K-P method with a linear
velocity profile, as reported in [1]. The results are
presented here only for £ =0.1/,/2 in Fig. 5. A com-
parison between Fig. 5 and Fig. 3 clearly illustrates the
superiority of the refined K-P procedure. The absence
of a sharp decrease of the heat-transfer rate in the
interval, 6 < Pr < 100, is typical of the failure of the
original K-P procedure. Nevertheless, it should be
mentioned that for the case of suction, the original
K-P procedure with the same profiles is also capable
of predicting the correct asymptotic behavior for
Pr — oo, only the sensitivity of results to profiles is
more pronounced.

3.3, A distinguished limit

The singular perturbation nature of the boundary-
layer energy equation in the limit of Pr — oo is well-
known. (See, for example, Narasimha and Vasantha,
[16].) It is also apparent in (ic) in which the co-

HMT Vol. 19, No. 5—E

efficient of the highest derivative approaches zero as
Pr— oo. The asymptotic structure of the thermal
boundary layer with surface blowing in the limit of
Pr— oo has been discussed by Kassoy [17], among
others. The interesting phenomenon of thermal layer
blow-off is qualitatively analyzed for the case of a
porous plate with similarity blowing in [17].

Physically speaking, the thermal boundary layer has
a vanishing thickness relative to the momentum
boundary layer as Pr— o0, because the viscous dif-
fusion (~v) dominates the thermal diffusion (~ ).
Therefore, the heat transfer takes place in a very thin
region close to the wall where the convective velocity
components (u, v) are also small. In the case of trans-
pired boundary layers, an additional mechanism of
heat transfer (~¢) appears. The precise orders of
magnitude of these physical quantities as Pr — co are
related uniquely only in a distinguished limit in which
convection, conduction and mass transfer are of equal
importance. It is convenient and instructive to deduce
such a limit from the equations derived in the process
of the present development. We remark here that, as
Pr — oo, the present method seems particularly suited
for this case of vanishingly small [ in view of the
results discussed in Section 3.2.

Let us consider (11). The three terms from left to
right represent, respectively, the effects of convection,
conduction and mass transfer. Therefore, we require
that, as Pr — oo,

R 1
@ ~ 7); ~ &Ry, (16)
where we have used the relation F = O(R; }/?).
It follows immediately that
Pr—o:l=0(Pr 2, 1, =0(Pr ') and
852/6 = O(Pr~1P), (17)

Thus, the distinguished limit corresponds to van-
ishingly small values of 1 and §7/8. We are now led to
introduce the following variables for the study of this
limiting flow:

A=PrPI=0(1) (18a)

Ay = Pri;=0(Q). (18b)
In this limit, F may be expanded as

F=Fy+iF+... (19)

where Fy corresponds to the skin-friction coefficient in
the absence of mass transfer. Only the leading term,
Fo, will be needed in the ensuing calculations. The
result to be obtained thus corresponds to an approxi-
mation of the leading asymptotic term in this dis-
tinguished limit. A systematic asymptotic analysis of the
general flow in this distinguished limit appears to be an
interesting problem of fundamental importance but
beyond the scope of the present paper.,
For a flat plate, [1] provides

Y _
Fo=——R:',
J(22)
and, as mentioned earlier, (a, y) = (1/8, 1/6) is used in
the calculations.

(20)
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FI1G. 6. Porous plate, distinguished limit for similarity case
(present method).

3.3.1. Porous plate: similarity case. Introducing A
and A;, and applying the limit process, (17), to (12)
and (13), we arrive at the following resuits:

A = QP2@)' P A1+ A1)/ () 21)
and

Ny
iz = P [ @ @)

AP -AL (22)

Results of N, /(RY2Pr'/3) as a function of A for the
two temperature profiles are plotted in Fig. 6. It can
be shown that both curves approach the exact limit of
asymptotic suction. The dependence of the results to
profiles is still weak in this limiting flow, and the
thermal boundary-layer blow-off (N, = 0) is predicted
at a finite value of A. An exact treatment of this limiting
case was recently reported by Gersten [18] for a class
of Falkner—Skan flows. The same distinguished limit
was derived in a different manner in [18]. The exact
solution pertaining to the flat-plate configuration is
included in Fig. 6 for comparison with the present
approximate results. The agreement, in general, is
clearly quite satisfactory, except near thermal
boundary-layer blow-off where the exact solution
exhibits an exponential decay in heat transfer.

3.3.2. Porous plate: nonsimilar case. Equation (11) is
still the basic differential equation for this nonsimilar
flow, as the velocity, u, is approximated by (8). Now,
applying the limit process, (17) and (18), to (11) and
noting (20), we have the following differential equation
for the limiting flow:

8 1/2 _ A 3
@) " +ﬁA1)+<X1>

dA o
o
o] i
<A>
and
Ay (Ba)t®

Substituting (9) into (S) and introducing A and A,,

we obtain
Ny 7 A By
=P /314 _rr .
Rz [afm <1 dM

(24)

N
1o+ \
© \\

3§ oe-

o4l > Exact 6
P ‘94(7)7) \(&/ =g (ny)
ozt \\
N3
I i 1 i i il I hn S

| .
-2 -0 -08 -06 -04 -02 o) 02 04 06 08

A

F1G. 7. Porous plate, distinguished limit for uniform ¢
(present method).

Results of N,/(RY? Pr'/3) as a function of A are
plotted in Fig. 7 for the two temperature profiles used
in the calculation. The behavior of heat transfer is quite
analogous to that for the similarity case, Fig. 6. We
also note that the two curves will converge in the region
of large negative A and approach the exact asymptotic
suction limit, N,/(RL? Pr'’3) ~ [A]. No other limiting
solutions to this nonsimilar flow seem to exist in the
literature, to the best of the author’s knowledge.

4. APPLICATION TO CASES OF SMALL Pr

4.1. General remarks

In this section, the method is applied to the calcu-
lation of boundary-layer heat transfer in the limit of
Pr—»0. The mathematical limit here is R, - oc,
Pr—0 and R, Pr — oo, so that the concept of a thin
thermal layer near the surface is still valid. The chief
simplification is that the velocity profile, u, inside the
thermal boundary layer can be approximated by the
external potential stream u.(x) [ 12]. Therefore, we need
only to assume the temperature profile. The resulting
solution corresponds to the limiting case of Pr=0,
i.e. an inviscid but heat-conducting fluid. Two repre-
sentative examples will be presented in the following.
These examples will explicitly reveal the relevance of
the differential equations to a class of heat-conduction
problems. Therefore, the success of the present method
here would imply its potential usefulness in studying
general problems in transient heat conduction with
complex boundary conditions, including nonlinear
cases. Some initial attempts have already been made
by Volkov and Li-Orlov [19]. A more thorough in-
vestigation of this application appears desirable, and
should lead to a modified version of the work of
Goodman [20] who had applied the original K-P
method to a variety of heat-conduction problems.

4.2. Porous plate: & = const. = O(1/\/(R, Pr))
Here the velocity (4, v) = (4., vy) and the energy
equation takes the form

00 00 xk %6

SIS 25
ox an U Oy° (25)
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The first and second integrations of (25) lead to, re-
spectively,

Ny dRr

=y T 26
R.Pr 4R, ¢ (26)
and
dR; 1
; 487 _ : 27
*4R, PrRT+£ﬁ @7

where (&, ) are profile-parameters defined in the
Nomenclature. In deriving (26) and (27), a temperature
profile of the form 0 = g(nr) is assumed. Equation (27)
is readily integrated to give

ZR Pr=—8RTPr

B I?

and the heat-transfer coefficient follows from (26) as
N, B &/ (R:Pr)

B
= 1—— PrR,). (29
JRPr)” d, eRPr ( s/ (PrR). (29)
Equations (28) and (29) form a parametric repre-
sentation for the heat-transfer coefficient, i.e.

Ny
—_— = R, Pr)).
\/(Rx Pr) f(s\/( r))
Results corresponding to the two temperature pro-
files, g1 and g4, are illustrated in Fig. 8. The profile-
parameters associated with g, and g, and (&, f) =
(1/3, 1/2) and (2/15, 3/10), respectively.

n(l1+feRyPr), (28)

(30)

2 08 g (n,)
\+ +8 =g;(1;T)
i \+\ ~— Exact (21]
& +
£
=
I \Q.QM
+.
L | | 1 | 1 42 o
°55 o5 -0 -05 0 05 0 “)’T-s
€ VRxXFr

FiG. 8. Porous plate, uniform g, Pr — 0 (present method).

It is interesting to note that (25) is also relevant to
the problem of the transient heat conduction in a
semi-infinite solid moving with a constant velocity ¢ and
maintained at a constant temperature at y = 0. The
exact solution is available in Carslaw and Jaeger [21].
The heat-transfer rate is readily obtained from the
solution for 6, i.c.

N, ( >R, Pr
JRPr  JnP\T s >
- 8\/(};x P erfc(s\/(lzx Pr)) . (31

The exact solution is also shown in Fig. 8 for
comparison with the approximate solutions, (30). The
present results are clearly very satisfactory in accuracy;
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the close agreement between the results corresponding
to the two temperature profiles is also evident. How-
ever, it should be pointed out that as the blowing
intensity increases, the present approximate solutions
predict zero heat transfer (thermal! boundary-layer
blow-off) at finite values of /(R Pr), while the exact
solution shows exponential decay in heat transfer.
Therefore, as is usually the case, the accuracy of the
present solution begins to deteriorate as the blow-off
point is approached.

4.3. Circular cylinder

We now consider the case of a circular cylinder in
crossflow. The orthogonal curvilinear coordinate
system, (x, ), has its origin at the forward stagnation
point with x measuring the distance along the surface
(x =a¢). Then u*=2sin¢d, v* = —2y*cos¢. The
energy equation and the boundary conditions are

o6 06 1 %9

.00 @ _ o8
sin ¢ 76 y* cos ¢ %~ RpPr oy (32a)
6(9.0)=1  8(¢,08) =0, (32b)

where u* = u/u,,, v*¥ = v/uy,, y* = y/a and 6% = ér/a.

Applying the present method to (32a) results in the
following two equations, based on the assumed profile,
0 = glnr):

1 Np . dof
IR ﬁ( mgba;—i—é% cos ¢> (33)
and
., dot 1
é —_— 2 =——
¥ sin ¢ o +6¥ cosp = 3 RD B (34a)
with
0%(,0) = (@ Rp Pr)™ V2 = (6%)o. (34b)
Equation (34a) can be easily integrated to give
o = (0%)o sec; (35)
Equation (33) then gives
Np B ¢
— =2 CcoS— 36
J(RpPr) V@) 2 (36)
=173 cos% for 6 = g, (37a)
¢
= 1.64 cosi for 0 = g,. (37b)

The exact solution to this problem can be found in
Grosh and Cess [22] who transformed the equation to
astandard form of one-dimensional heat equation. The
heat-transfer result is:

N,
2 = 1.60 cos? .
J(RpPr) 2

The present method is again shown to yield satisfactory
results.

(38)

5. CONCLUDING REMARKS
The primary purpose of this paper is to present a
simple procedure for practical calculations of heat
transfer in boundary layers. Oversimplified and, in fact,
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improper profiles are deliberately used in the calcu-
lations, and the principal merit of the method, namely,

in transpired boundary layers, NOLTR 73-17, Naval
Ordnance Laboratory, White Oak, Md. (Feb. 1973).

the remarkable combination of simplicity and accuracy, ~ 0 K. Gersten and H. Korner, Wirmetibergang unter
. ) . . Berticksichtigung der Reibungswidrme bei laminaren
is amply demopstrateq d_nd fully explmted. No effort is Keilstromunger mit verdnderlicher Temperatur und
expended here in providing the details of the flow field. Normalgeschwindigkeit entlang der Wand, Int. J. Heat

Results of these calculations indicate that the Mass Transfer 11, 655--673 (1968).
rudimentary application of the method, as described in 7. A.Fageand V. M. Falkner, Relation between hea trans-
this paper, is adequate for most engineering purposes. {Tg;?)d surface friction for laminar flow. ARC RM 1403
The weak dependence of the results to the profiles ¢ n " Lighthill, Contributions to the theory of heat
continues to prevail. This is believed to be a con- transfer through a laminar boundary layer, Proc. R. Soc.
sequence of using an integral expression for the surface 202A 359-377 (1950). o
heat flux; the effect of improper profiles is mostly 9. G. W. Morgan and W. H. Warner, Heat transfer in

. . L laminar boundary layers at high Prandtl number, J.
reflected in the somewhat spurious predictions of Aeronaut. Sci. 23, 937.948 (1956)
transverse scales of the boundary layers, 0 and dr, s0 10, N. Curle, The Laminar Boundary Layer Equations,
that the predictions of the wall heat-flux remain Chapter 6. Clarendon Press, Oxford (1962).
reasonably accurate. However, near the thermal 1l B. T. Chao, An improved Lighthill's analysis of heat
boundary-layer blow-off where the heat-transfer rates transfer through boundary layers, Int. J. Heat Mass

. Transfer 15, 907-920 (1972).

are small, the resu].ts a_re usqfql only for quglltatlve 12. H.Schlichting, Boundary Layer Theory, 6th edn, Chapter
purposes. This finding is reminiscent of the difficulty 12. McGraw-Hill, New York (1968).
encountered in the previous skin-friction calculations 13, W.E. Stewartand R. Prober, Heat transfer and diffusion
[1 2] in wedge flows with rapid mass transfer, Int. J. Heat

e - . Mass Transfer 5, 1149--1163 (1962).

The possibility of gsmg the method to study general 14. E. R. Thompson, High Prandtl number boundary layers
problems of transient heat conduction appears with mass injection, ATAA4 JI 7, S47-548 (1969).
promising and warrants further investigation. 15. H. W. Emmons and D. C. Leigh, Tabulation of the

Blasius function with blowing and suction, ARC TR

v . L 15966, C.P. No. 157 (1964).
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ETUDE APPROCHEE DU TRANSFERT DE CHALEUR DANS LES COUCHES LIMITES
DE TRANSPIRATION AVEC EFFET DU NOMBRE DE PRANDTL

Résumé—On a développé une procédure simple qui permet des calculs approchés des taux de transfert
thermique pariétal dans les couches limites de transpiration. Les applications de cette procédure sont
illustrées par des exemples variés d’écoulements laminaires incompressibles, pour des nombres de Prandtl
faibles et élevés. Une limite remarquable aux grands nombres de Prandtl avec un faible taux de transfert
massique est aisément identifiée, et quelques solutions limites sont présentées pour la configuration d’une
plaque poreuse. Les calculs, effectués dans les cas avec faibles nombres de Prandtl, montrent clairement
P'utilité de la méthode dans I’étude des problémes transitoires de conduction thermique. La remarquable
association de la précision a la simplicité constitue la qualité essentielle de la méthode.

ANGENAHERTE ANALYSE DES WARMEUBERGANGS IN DURCHLASSIGEN
GRENZSCHICHTEN MIT EFFEKTEN DER PRANDTL-ZAHL

Zusammenfassung—Flir Néherungsrechnungen des Wiarmeiibergangs an der Wand bei durchléssigen
Grenzschichten wird ein einfaches Verfahren angegeben. Anwendungen dieses Verfahrens werden fiir
verschiedene Beispiele gezeigt fiir inkompressible laminare Strémungen bei groflen und kleinen Prandtl-
Zahlen. Eine deutliche Grenze fiir groBe Prandtl-Zahl und kleine Stoffiibergangsrate wird aufgezeigt
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und einige Grenzlésungen werden fiir den Fall der pordsen Platte wiedergegeben. Berechnungen mit

kleinen Prandtl-Zahlen zeigen deutlich die Niitzlichkeit der Methode bei der Untersuchung instationérer

Wirmeleitprobleme. Die bemerkenswerte Kombination von Genauigkeit und Einfachheit stellen den
Hauptvorteil der Methode dar.

TIPUBJIVDKEHHBIT AHANW3 MMEPEHOCA TEIUJIA B [IOTPAHUYHOM CJIOE
B IMPOLECCE IMOPUCTOI'O OXJIAXIOEHWSA ITPU BIMAHUUN YUCIIA
TIPAHATIIA

Annotamms — PaspabGotaHa mpocTass METoOMKa NPHOIMXKEHHOTO pacuyeTa CKOPOCTH MepeHoca
TelNa B MOTPAHAYHOM CJIOE HA CTEHKE [IPU MOPUCTOM OxiaxaeHHH, [IpaMeHenne METONUKH HILTIO-
CTPHpYETCS Ha Pa3NUYHBIX IIPUMEPAX HECKHMAEMOTO JTAMUHAPHOTO TEYEHHA KUIKOCTH A GonbInx
¥ Mapix 3HaveHu#d wucna [Ipaunris. C € mOMOIUBIO JIETKO OnpeaeNserca Npeaes GONpWIKX 3Ha-
vennl yucna Ipanatis ¥ HeGONBIIMX 3HAYCHHH CKOPOCTH HEpeHOca MAccHl. IIpencTaBieHsl HeKo-
TOpBIE NpenenbHBIE PEIIEHHs AN MOPHUCTON MIACTHHBI. PacyeThl Is CIyYaeB MasblX 3HaYeHWH
ygcna TIpaHATIs ABHO CBHAETENLCTBYIOT O MPUTOOHOCTH METOAA AJIA M3ydyeHus npoblieMbl HecTa-
LHOHAPHON TENIONPOBOAHOCTH. YIUBHTENBHOE COYETAHME TOYHOCTH M IPOCTOTHI ABJIAETCS OCHOB-
HBIM JOCTOMHCTBOM METOZA.
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