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Abstract-A simple procedure is developed for approximate calculations of wall heat-transfer rates in 
transpired boundary layers. Applications of this procedure are illustrated by Yarious examples of in- 
compressible, laminar flows in the limits of large and small Prandtl numbers. A distinguished limit of 
large Prandtl number and small mass-transfer rate is easily identified, and some limiting solutions are 
presented for the porous-plate configuration. Calculations for the cases with small Prandtl numbers 
explicitly demonstrate the usefulness of the method in studying transient heat-conduction problems. The 

remarkable combination of accuracy and simplicity represents the principal merit of the method. 

NOMENCLATURE 

radius of a circular cylinder; 
skin-friction coefficient, z,,&u”, ; 
specific heat of gas at constant pressure; 

complementary error function; 

:c,; 
profile for dimensionless temperature, 

T-T, 

T,.-T,; 

l-9; 

Karman-Pohlhausen; 
heat conductivity of the gas; 
Nusselt number, &,x/( T,- T,)k; 
Nusselt number, 2@,/(T, - T,)k; 
Prandtl number, pC,fk; 
heat flux in the direction of y; 
Reynolds number based on the diameter, 
2u,a/v; 
Reynolds number based on x, u,x/v; 
Reynolds number based on 6, u,6/v; 
Reynolds number based on 8T, u,&/v; 
absolute temperature; 
velocity components corresponding to (x. y); 

tu*, o*A(u/um, U/Urn); 
(x, y), orthogonal coordinate system with origin at 

the leading edge or forward stagnation point, 
x along the surface. 

Greek symbols 

(u., 8, y), velocity profile-parameters defined in [ 11; 
6 a temperature profile-parameter, 
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a temperature profile-parameter, 

! 
‘1 

+ ‘bSh+h-; 
0 

a temperature profile-parameter, 

s 

1 

0 h-)d’IT; 

a temperature profile-parameter, 

I 

1 

W?(V&h; 
0 

thickness of velocity boundary layer; 
thickness of thermal boundary layer; 
basic mass-transfer parameter, u,&, ; 
similarity variable, y/&-; 

dimensionless temperature, s; 
W m 

thermal diffusivity, k/(pC,); 
Xpr- 213. 

Pr& ; 
&X/8 ; 
ER,“~; 

&RT; 

dynamic viscosity; 
kinematic viscosity; 
density; 
shear stress; 
angle measured from forward stagnation 
point. 

Subscripts 

a, condition far upstream; 

e, edge of boundary layer; 

W, wall condition; 

0, initial condition. 
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I. INTRODUCTION 

A SIMPLE, approximate method for calculating the 
skin friction on porous surfaces has recently been de- 
scribed by Zien [l, 21. It is based on an idea, due 
originally to Volkov, [3], for refining the classical 

Karman-Pohlhausen (K-P) momentum integral tech- 

nique in the boundary-layer theory, and is basically a 

one-parameter type of integral approach. 
The chief merits of this analytical method, as 

illustrated in [ 1, 21, lie in the remarkable combination 

of simplicity and accuracy. The relative insensitivity of 
the results to the choice of velocity profiles is particu- 

larly noteworthy. These encouraging findings are in- 
dicative of the potential of the method for development 
into a useful tool for practical calculations of boundary- 

layer flows of a more complex nature. Further ex- 
ploitation and extension of this new method appear 

warranted. 
The present paper contains the development of a 

procedure for approximate calculations of wall heat- 

transfer in a transpired boundary layer. The procedure 
is based on a further modification and extension of 

Volkov’s [3] original idea. Thus, the heat transfer on an 
aerodynamic surface is calculated by considering the 

energy balance across the entire, attendant (thermal) 
boundary layer at a local flow station. A second 
integration of the energy equation in the direction 

normal to the surface is then performed to provide an 
ordinary differential equation for the determination of 

the basic profile-parameter. To be sure, the idea of 
using a double-integration scheme had appeared 
earlier in Whitehead’s [4] investigation of momentum 
boundary layers. However, the determination of skin 
friction in [4] was based on the local slope of the 
assumed velocity profile, as in the original K-P 
procedure. 

For easy demonstration of the method, only simple, 
yet basic, flows are considered in this paper. Thus, 
applications are made to two-dimensional, incom- 
pressible, laminar boundary layers of a single- 
component fluid. Results are presented here only for 
limiting cases of large or small Prandtl numbers where 

certain simplifying approximations can be effectively 
exploited to further facilitate the exhibition of the 
central ideas of the method. Detailed results for 
Pr = O(1) pertaining to the semi-infinite flat plate 
with uniform surface mass flux are available in Zien 
[5]. The frictional heating is neglected in the energy 

equation throughout the calculations, and this approxi- 
mation is generally valid for incompressible boundary 
layers where the Eckert number is usually small. An 
exact and comprehensive analysis of heat transfer in a 
class of self-similar transpired boundary layers, in- 
cluding the effects of frictional heating, can be found 

in Gersten and Korner [6]. 
The method is first applied to the case of transpired 

boundary layers with large Prandtl numbers. A dis- 
tinguished limit of large Prandtl number and small 
mass-transfer rate is readily apparent in the present 
integral formulation. Some examples of this limiting 
flow are studied. The procedure is then used to study 

a class of low Prandtl number heat-transfer problems, 
and the usefulness of the present method in providing 
approximate solutions to general transient heat- 
conduction problems becomes evident in the process. 

It is noted here that all the calculations presented 
in this paper involve, at most, the numerical integration 
of a single, first-order ordinary differential equation. 
In many cases solutions are obtained in explicit, 
analytical forms. The primary purpose of the paper is 
not to present solutions to any new problems. Rather, 
it is to show how simply some old solutions can be 

reproduced with good accuracy by the present method. 

2. GENERAL FORMULATION 

2.1. Equations and boundary conditions 

In terms of the nondimensional velocity (u*, u*) and 

temperature, 8, the basic differential equations and 
boundary conditions for an incompressible, constant- 
property, laminar boundary layer over an isothermal 
porous surface are : 

iw &I* 
z+f’= 0, (14 

“.Y 

au* au* 1, a%* au* u*-+$v*7=_L+fu~~, 
ax urn ay= ax “y 

a0 a0 1 028 u*_-fv*-_=L---. 
(7X ay u, or ay2 ’ 

(lb) 

(14 

at y = 0: 

ll* = 0 (2a) 
8=1 (2b) 

a* zz a (2c) 
asy+co: 

u* -+ 1 (24 
0 -+ 0. (24 

In the usual practice of integral methods, the asymp- 
totic conditions are specified at the edges of the 
boundary layer, 6 and Jr, for u* and 0, respectively. 
Some initial conditions on u* and 0 are generally re- 

quired at x = 0 to complete the formulation. These 
initial conditions are replaced by conditions on initial 

boundary-layer thicknesses, 6(O) and &(O), in the 

present integral formulation. 
The skin-friction coefficient, C,,, and the Nusselt 

number, N,, are related to u* and @ through the 
following expressions : 

W 

2.2. Present method of solution 
Since the momentum equation is decoupled from the 

energy equation, the solution of u* can proceed in- 
dependently of the temperature field. In order to 
present a self-consistent development of the calculation 
procedure, we shall make use of the approximate 
solutions of u* by a similar calculation scheme as 
reported by Zien [l, 21 for the examples to be dis- 
cussed below. 
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We now proceed directly to solve the energy 
equation. The first integration of (lc) gives 

u*0dy+@- 1) 

where the continuity equation has been used to 
eliminate v* in favor of u*. 

Equation (4) is taken as an expression for the wall 
heat flux by letting the integration cover the entire 
thermal boundary layer. Thus, using (3b), we have 

,&!i=d DTu*@dy-E. 
s R,Pr dx o 

(5) 

Equation (5) is a nondimensional version of the 
energy balance across the thermal boundary layer at 
the station x. Therefore, the surface heat transfer is 
determined from an integral expression involving the 
assumed profiles for u* and 0. Of course, this repre- 
sentation would be exactly the same as the one using 
the derivative of 0 at the wall if the profiles used for 
u* and 0 were the exact solutions of the problem 
under consideration. 

The basic parameter of the thermal boundary layer, 
&, is to be determined by the following differential 
equation which results from a second integration of the 
original energy equation. Thus, effecting another 
integration of (4), we arrive at 

s ST 

0 
u*6dy-5. (6) 

In deriving (6) use has been made of the wall heat-flux 
expression, (5). 

We assume the following simple form for 8: 

@ = g(qr) = f: ki$r, ki = const. (7) 
i=O 

The choice of the profiles is obviously crude in the 
sense that they presume similarity for general flows to 
be considered below. However, they are to be chosen 
such that the essential boundary conditions, (2b) and 
(2e), are observed. 

Equation (6) reduces to a first-order, nonlinear, 
ordinary differential equation for 8r, once a form for 
8, such as (7) is introduced. With ST solved, the Stanton 
number, S, follows readily from (5) through an 
algebraic process. 

3. APPLICATION TO CASES OF LARGE Pr 

3.1. General remarks 
The existing literature on boundary-layer flows with 

large Prandtl numbers is voluminous. Our purpose 
here is merely to describe the application of the present 
simple method to this class of flows. Hence, only the 
references pertinent to the present development and 
results will be mentioned. 

For large Prandtl numbers, the simplified repre- 
sentation of the velocity in the thermal boundary layer 
is 

rw 
u--y. 

p 

This approximation was introduced and discussed by 
Fage and Falkner [7], Lighthill [S], Morgan and 
Warner [9], among others, and is convenient for 
systematic developments. Subsequent extensions and 
improvements of this simplifying approximation can 
be found, for example, in Curle [lo], and more 
recently, Chao [ll]. This simple expression will be 
exploited in the present formulation. The examples to 
be presented here are porous-plate boundary layers for 
which the skm friction, r,,,, has been calculated earlier 
by Zien [l, 2-J. A self-consistent development of the 
procedure is thus readily accessible. The results to be 
presented and discussed in the following are all based 
on the approximate solutions of 7sw pertaining to the 
linear velocity profile used in [l]. However, two 
temperature profiles, g1 and g4, are used in the calcu- 
lation to test the sensitivity of results to the temperature 
profiles. We note here that the velocity profile- 
parameters take the values (c(. p, it) = (l/8, l/2, l/6) in 
the ensuing calculations (see [l]), and the temperature 
profile-parameters, (& 8, i) for g1 and g4 are (l/8, l/2, 
l/6) and (l/28, 3/10, l/15), respectively. 

3.2. Porous plate: similarity case 
The basic equations are (5) and (6). From (8) we have 

u* = :CI.RTqT = FRTqT (9) 

where RT = u,&-/v. For this particular flow, the result 
of F as reported by Zien [l], i.e. 

will be used. Also, 1 is related to 1 through 

(10’4 

Substitution of (9) into (6) leads readily to 

oiRT & (R+F) = ; + /%RT. (11) 
x 

For the case of similarity blowing (or suction), 
&RT = const., and (11) is easily integrated to give the 
following solution: 

--- 
ci Pr 

P 

( > 

= 0, (12) 

-- ‘2 A 

where Ii = eRT. 
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The heat transfer is obtained from (5). once RT is 
found. The result is 

Equations (12), (13) and (lob) constitute the solution 
for N,/Rj” as functions of 1 and Pr. 

It is interesting to note the behavior of the present 
approximate solutions in the limit of Pr + cc and 

I= O(1) for suction and blowing separately. Following 
limiting solutions are easily deduced from (12) and 

(13): 

(14) 

I > O:l1 - P2 

s- PrX EL-1 
( > 

. (15) 
x c( 

For the special case of z= 0, the asymptotic limits 

for Nx/R$2 as Pr + cc are 0.367 Pr1j3 and 0.338 Pr1’3 
for 0 = g1 and g4, respectively. These approximate 
limits are to be compared with the exact limit of 

0.339 Pr1j3 (see, for example, [12]). 
As Pr -+ co, the heat-transfer rate predicted here 

approaches the correct asymptote (see Gersten and 
KGrner [6]) independent of profiles for the case of 
suction. For blowing, the present solutions show a 
strong profile-dependent behavior. Note that the 
quantity in the parenthesis of (15) is negative for both 
profiles considered here. The implications of the above 
observations are thus clear. As Pr increases, the present 

solutions are uniformly good for suction, but predict 
too rapid a decay in the heat-transfer rate for blowing, 
especially when 1 is large. 

Some typical results are illustrated in Figs. 14 and 
compared with the available exact solutions due to 
Stewart and Prober [13] and Thompson [14] when- 
ever appropriate. 

Figure 1 shows the results for Pr = 1 for which an 
exact integral, f3 = 1 -u*, holds. Exact solutions for 
heat transfer are thus available from the exact skin- 
friction results of Emmons and Leigh [15], or directly 
from [13], for comparison. It is remarkable that the 
present procedure, suitable for large Prandtl numbers, 
yields very accurate results of heat transfer for Pr = 1. 
Of course, the finding that the validity of a calculation 
procedbre designed for large Prandtl numbers actually 
extends into regions of moderate Prandtl numbers is 
not totally unexpected, see [8]. We also note the in- 
sensitivity of the present results to the profiles used in 
the calculations. 

Figures 2-4 show the heat-transfer results are 
functions of the Prandtl number at three values of 
1~0 01142. 0.1/,/2 and -42110, for which exact 

FIG. 1. Porous plate, similarity case, Pr = I (present 
method, u = ys,/p). 

oe=g,cq,) 
i-e ‘94 (f)J Ix; @!a 

- Exact (numencol) 1141 
J-F- 

FIG. 2. Porous plate, similarity blowing (present method. 

U = YTWlIo. 

- Exact (numerical) [I43 + 

IO.22 IO 
Pr 

FIG. 3. Porous plate, similarity blowing (present method, 
U = .WW/A. 

solutions are available for comparison. These results 
clearly confirm our aforementioned predictions based 
on the behavior of the present solutions in the limit of 
Pr -+ co. However, it should be remarked here that as 
Pr -+ co, the results pertaining to blowing, though 
quantitatively inaccurate, are still qualitatively correct. 
It is possible that the thermal boundary layer is blown 
off the surface while the momentum boundary layer 
still remains attached. 
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Exact Inumerical) 1131 

I 

10-1 
10 103 

Pf 

FIG. 4. Porous plate, similarity suction (present method, 
u = yrdp). 

1 
I 

Pf 

FIG. 5. Porous plate, similarity blowing (usual K-P method, 
u = y7wl/lo. 

The same approach and profiles are then employed 
in the original K-P procedure for this problem, using 
7w obtained from the original K-P method with a linear 
velocity profile, as reported in [l]. The results are 
presented here only for n’= O.l/J2 in Fig. 5. A com- 
parison between Fig. 5 and Fig. 3 clearly illustrates the 
superiority of the refined K-P procedure. The absence 
of a sharp decrease of the heat-transfer rate in the 
interval, 6 < Pr < 100, is typical of the failure of the 
original K-P procedure. Nevertheless, it should be 
mentioned that for the case of suction, the original 
K-P procedure with the same profiles is also capable 
of predicting the correct asymptotic behavior for 
Pr -+ co, only the sensitivity of results to profiles is 
more pronounced. 

3.3. A distinguished limit 
The singular perturbation nature of the boundary- 

layer energy equation in the limit of Pr + co is well- 
known. (See, for example, Narasimha and Vasantha, 
[16].) It is also apparent in (lc) in which the co- 

HMT Vol. 19,No. 5-E 

efficient of the highest derivative approaches zero as 
Pr + co. The asymptotic structure of the thermal 
boundary layer with surface blowing in the limit of 
Pr -+ co has bken discussed by Kassoy [17], among 
others. The interesting phenomenon of thermal layer 
blow-off is qualitatively analyzed for the case of a 
porous plate with similarity blowing in [17]. 

Physically speaking, the thermal boundary layer has 
a vanishing thickness relative to the momentum 
boundary layer as Pr -+ co, because the viscous dif- 
fusion (- v) dominates the thermal diffusion (- K). 

Therefore, the heat transfer takes place in a very thin 
region close to the wall where the convective velocity 
components (u, u) are also small. In the case of trans- 
pired boundary layers, an additional mechanism of 
heat transfer (-E) appears. The precise orders of 
magnitude of these physical quantities as Pr + cc are 
related uniquely only in a distinguished limit in which 
convection, conduction and mass transfer are of equal 
importance. It is convenient and instructive to deduce 
such a limit from the equations derived in the process 
of the present development. We remark h&e that, as 
Pr -+ co, the present method seems particularly suited 
for this case of vanishingly small 1 in view of the 
results discussed in Section 3.2. 

Let us consider (11). The three terms from left to 
right represent, respectively, the effects of convection, 
conduction and mass transfer. Therefore, we require 
that, as Pr -+ co, 

JG 1 
R3’2-p,-& RT, 

x 
(16) 

where we have used the relation F = O(R; I/‘). 
It follows immediately that 

Pr + co:x= 0(Pr-2’3), I1 = O(Pr-‘) and 

&/6 = O(Pr- 1’3). (17) 

Thus, the distinguished limit corresponds to van- 
ishingly small values of 1 and C&-/C?. We are now led to 
introduce the following variables for the study of this 
limiting flow: 

A = Pr213 X = O(1) (lga) 
A1 = Pr I1 = O(1). (lgb) 

In this limit, F may be expanded as 

F=Fo+XF1+... (19) 

where Fo corresponds to the skin-friction coefficient in 
the absence of mass transfer. Only the leading term, 
Fo, will be needed in the ensuing calculations. The 
result to be obtained thus corresponds to an approxi- 
mation of the leading asymptotic term in this dis- 
tinguished limit. A systematic asymptotic analysis of the 
general flow in this distinguished limit appears to be an 
interesting problem of fundamental importance but 
beyond the scope of the present paper. 

For a flat plate, [l] provides 

F,, = (20) 

and, as mentioned earlier, (c(, y) = (l/8, l/6) is used in 
the calculations. 
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0 Exact [ISI 
06 

‘-1 0 -0.8 -06 -04 -0-2 0 0.2 04 

A 

FIG. 6. Porous plate, distinguished limit for similarity case 
(present method). 

3.3.1. Porous plate: similarity case. Introducing A 

and A1, and applying the limit process, (17), to (12) 
and (13), we arrive at the following results : 

II: = (2)3’2(,)1’*A3(1 +AJ)/(ozy) (21) 
and 

$ = pr1~3[~((cc)-“6(oi)-*/3(y)‘/3(2)-1/*(1 
x 

+ A1fl2’3 -A]. (22) 

Results of N,/(R:‘2Pr1!3) as a function of A for the 
two temperature profiles are plotted in Fig. 6. It can 
be shown that both curves approach the exact limit of 
asymptotic suction. The dependence of the results to 
profiles is still weak in this limiting flow, and the 
thermal boundary-layer blow-off (N, = 0) is predicted 
at a finite value of A. An exact treatment of this limiting 

case was recently reported by Gersten [18] for a class 
of Falkner-Skan flows. The same distinguished limit 
was derived in a different manner in [18]. The exact 
solution pertaining to the flat-plate configuration is 
included in Fig. 6 for comparison with the present 

approximate results. The agreement, in general, is 
clearly quite satisfactory, except near thermal 
boundary-layer blow-off where the exact solution 
exhibits an exponential decay in heat transfer. 

3.3.2. Porous plate: nonsimilar case. Equation (11) is 
still the basic differential equation for this nonsimilar 
flow, as the velocity, u, is approximated by (8). Now, 

applying the limit process, (17) and (18), to (11) and 
noting (20), we have the following differential equation 
for the limiting flow: 

dA1 
$$l+pA,)+ ; 3 

0 ---zz 
dA z (23a) 

and 

A-+0, ;+g, 

Substituting (9) into (5) and introducing A and A,, 
we obtain 

il 

FIG. 7. Porous plate, distinguished limit for uniform c 
(present method). 

Results of Nx/(R:j2 PrlJ3) as a function of A are 
plotted in Fig. 7 for the two temperature profiles used 
in the calculation. The behavior of heat transfer is quite 

analogous to that for the similarity case, Fig. 6. We 
also note that the two curves will converge in the region 
of large negative A and approach the exact asymptotic 
suction limit, N,/(R,“’ Pr1’3) - IAl. No other limiting 

solutions to this nonsimilar flow seem to exist in the 
literature, to the best of the author’s knowledge. 

4. APPLICATION TO CASES OF SMALL Pr 

4.1. General remarks 
In this section, the method is applied to the calcu- 

lation of boundary-layer heat transfer in the limit of 

Pr -0. The mathematical limit here is R, -+ a, 
Pr + 0 and R,Pr -+ co, so that the concept of a thin 
thermal layer near the surface is still valid. The chief 

simplification is that the velocity profile, u, inside the 
thermal boundary layer can be approximated by the 

external potential stream u,(x) [12]. Therefore, we need 
only to assume the temperature profile. The resulting 
solution corresponds to the limiting case of Pr = 0, 
i.e. an inviscid but heat-conducting fluid. Two repre- 
sentative examples will be presented in the following. 
These examples will explicitly reveal the relevance of 

the differential equations to a class of heat-conduction 
problems. Therefore, the success of the present method 
here would imply its potential usefulness in studying 
general problems in transient heat conduction with 
complex boundary conditions, including nonlinear 
cases. Some initial attempts have already been made 
by Volkov and Li-Orlov [19]. A more thorough in- 
vestigation of this application appears desirable, and 
should lead to a modified version of the work of 
Goodman [20] who had applied the original K-P 
method to a variety of heat-conduction problems. 

4.2. Porous plate: E = const. = O(l/J(R,Pr)) 
Here the velocity (u, U) = (u,, 0,) and the energy 

equation takes the form 

C)?C+e-=---i. dY urn ?v (25) 
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The first and second integrations of (25) lead to, re- 
spectively, 

K _ d& 
-=cr1dR,-E Rx Pr 

and 

_ dRT 1 
” dR, = PrRT 

--+E~. 

(26) 

(27) 

where (61, a) are profile-parameters defined in the 
Nomenclature. In deriving (26) and (27), a temperature 
profile of the form 0 = g(qr) is assumed. Equation (27) 
is readily integrated to give 

s2RXPr =ssRrPr--ln(l+&RrPr), (28) 
B B2 

and the heat-transfer coefficient follows from (26) as 

fl EJUGPr) 8” ___- & = z ERTPr 

i i 
1 -g E J(PrR.4. (29) 

Equations (28) and (29) form a parametric repre- 
sentation for the heat-transfer coefficient, i.e. 

J&T) = f (EJR Pr)). 

Results corresponding to the two temperature pro- 
files, g1 and g4, are illustrated in Fig. 8. The profile- 
parameters associated with g1 and g4 and (oil, 8) = 
(l/3, l/2) and (2/15,3/10), respectively. 

- Exact 1211 I 

E$ IL I- 

0 I 
-2.0 -0-5 0 0.5 I.0 15 

FIG. 8. Porous plate, uniform E, Pr + 0 (present method). 

It is interesting to note that (25) is also relevant to 
the problem of the transient heat conduction in a 
semi-infinite solid moving with a constant velocity E and 
maintained at a constant temperature at y = 0. The 
exact solution is available in Carslaw and Jaeger [21]. 
The heat-transfer rate is readily obtained from the 
solution for 0, i.e. 

&q=$exp (-c!g?) 

E JUG Pr) -___ 
2 

erfc 

The exact solution is also shown in Fig. 8 for The primary purpose of this paper is to present a 
comparison with the approximate solutions, (30). The simple procedure for practical calculations of heat 
present results are clearly very satisfactory in accuracy; transfer in boundary layers. Oversimplified and, in fact, 

the close agreement between the results corresponding 
to the two temperature profiles is also evident. How- 
ever, it should be pointed out that as the blowing 
intensity increases, the present approximate solutions 
predict zero heat transfer (thermal boundary-layer 
blow-off) at finite values of E ,/(Rx Pr), while the exact 
solution shows exponential decay in heat transfer. 
Therefore, as is usually the case, the accuracy of the 
present solution begins to deteriorate as the blow-off 
point is approached. 

4.3. Circular cylinder 
We now consider the case of a circular cylinder in 

crossflow. The orthogonal curvilinear coordinate 
system, (x, y), has its origin at the forward stagnation 
point with x measuring the distance along the surface 
(x = a4). Then u* = 2sin 4, V* = -2y* cos 4. The 
energy equation and the boundary conditions are 

1 20 
sin4?-y*cosm$=--- 

&#J RD Pr @*2 
Wa) 

w, 0) = 1 (3-W 
where u* = u/u,, v* = v/u,, y* = y/a and S$ = &/a. 

Applying the present method to (32a) results in the 
following two equations, based on the assumed profile, 

0 = g(qT): 

i & = P(sindd$+@ cos$) (33) 

(34a) 

with 
6$(& 0) = (&RDPr)-‘i2 5 (6&. (34b) 

Equation (34a) can be easily integrated to give 

S$ = (@)0 sec$. (35) 

Equation (33) then gives 

ND _P 4 
,,/(RDP?-) 2 m “‘2 (36) 

= 1.73 ~0s: for 0 = g1 (37a) 

= 1.64 cos 5 for 0 = g4. (37b) 

The exact solution to this problem can be found in 
Grosh and Cess [22] who transformed the equation to 
a standard form of one-dimensional heat equation. The 
heat-transfer result is: 

ND 
-= 

,/Vb Pr) 
1.60 co,;. (38) 

The present method is again shown to yield satisfactory 
results. 

5. CONCLUDING REMARKS 
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improper profiles are deliberately used in the calcu- 
lations, and the principal merit of the method, namely, 
the remarkable combination ofsimphcity and accuracy, 
is amply demonstrated and fully exploited. No effort is 
expended here in providing the details of the flow field. 

Results of these calculations indicate that the 
rudimentary application of the method, as described in 

this paper, is adequate for most engineering purposes. 
The weak dependence of the results to the profiles 
continues to prevail. This is believed to be a con- 

sequence of using an integral expression for the surface 
heat flux; the effect of improper profiles is mostly 

reflected in the somewhat spurious predictions of 
transverse scales of the boundary layers. 6 and ijr. so 

that the predictions of the wall heat-flux remain 
reasonably accurate. However, near the thermal 

boundary-layer blow-off where the heat-transfer rates 
are small, the results are useful only for qualitative 
purposes. This finding is reminiscent of the difficulty 
encountered in the previous skin-friction calculations 

[l, 21. 
The possibility of using the method to study general 

problems of transient heat conduction appears 
promising and warrants further investigation. 
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ETUDE APPROCHEE DU TRANSFERT DE CHALEUR DANS LES COUCHES LIMITES 
DE TRANSPIRATION AVEC EFFET DU NOMBRE DE PRANDTL 

R&urn&On a developpi: une procedure simple qui permet des calculs approches des taux de transfert 
thermique parietal dans les couches limites de transpiration. Les applications de cette procedure sont 
illustr& par des exemples varies d’ecoulements laminaires incompressibles, pour des nombres de Prandti 
faibles et tlevb. Une limite remarquable aux grands nombres de Prandtl avec un faible taux de transfert 
massique est aisement identified, et quelques solutions limites sont p&sent& pour la configuration d’une 
plaque poreuse. Les calculs, effect&s dans les cas avec faibles nombres de Prandtl, montrent clairement 
l’utilite de la methode dans l’etude des problemes transitoires de conduction thermique. La remarquable 

association de la precision a la simplicite constitue la qualite essentielle de la methode. 

ANGENAHERTE ANALYSE DES WARMEUBERGANGS IN DURCHLASSIGEN 
GRENZSCHICHTEN MIT EFFEKTEN DER PRANDTL-ZAHL 

Zusammeofassung-Fiir Niherungsrechnungen des Wiirmeiibergangs an der Wand bei durchlassigen 
Grenzschichten wird ein einfaches Verfahren angegeben. Anwendungen dieses Verfahrens werden fiir 
verschiedene Beispiele gezeigt fiir inkompressible laminare Stromungen bei groBen und kleinen Prandtl- 
Zahlen. Eine deutliche Grenze fiir grot3e Prandtl-Zahl und kleine Stoffiibergangsrate wird aufgezeigt 
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und einige Grenzlosungen werden fur den Fall der porosen Platte wiedergegeben. Berechnungen mit 
kleinen Prandtl-Zahlen zeigen deutlich die Niitzlichkeit der Methode bei der Untersuchung instationlrer 
Wiirmeleitprobleme. Die bemerkenswerte Kombination von Genauigkeit und Einfachheit stellen den 

Hauptvorteil der Methode dar. 

ITPHBJIH~EHHbIH AHAJIH3 HEPEHOCA TEl-IJTA B IIOT’PAHHCIYHOM CJIOE 
B HPOHECCE I-IOPHCTOFO OXJTAIAEHMJT I-IPH BJIHRHHH HHCJTA 

TIPAHflTJDi 

ARllOTaUllH - PaspaBoraua npocraa Meronuxa npsr6nw~ennoro pacrera CKOPOCTH nepenoca 
Terma B norpami~noM cnoe ria crerixe npu II~~HCT~M oXnaxc,qemiri. FIpuMeriertue Merojrsimi rinnro- 
crpripyerca na pa3nauabrx npaMepax r-recH(xMaeMoro naMunaprior0 TeYerisix ~AKOCTB AAn donbmwx 
H MUbIX 3HWieHHti -CJIa npaHATn%I. c & IIOMOIUblO JIerKO OllPeAeJIReTCSl llpAeA 6onbruux 3Ha- 

YeHSii 'IHCJIa npaHATnX W He6onbruHx 3HaYeHHfi CKOPOCTH IIePeHO& M&SSI. nPeACTiiElJIeHbI HeKO- 

TOpbIe IlPeAeAbHbIe PeIIIeHHR AJIK llOpHCTOt IIJIaCTSiHbI. PiWieTbI AJIR CJIy'IaeB MUlbIX 3HarIeHHti 

‘IHCJ-la npaHATnJl IIBHO CBHAeTeJIbCTByIOT 0 IIPWOAHOCTH MeTOAa AJIR H3yYeHWl npo6neMbI HCCTO- 

WiOHiIpHOt TelTJiOI-IpOBOAHOCTH.YAHBHTeJlbHOe CO'ieTaHUe TOPHOCTW )i I'IpOCTOTbI IIBJIlIeTCIl OCHOB- 

HbIMAOCTOWHCTBOM MeTOAa. 


